Inhibition of transforming growth factor beta signaling reduces pancreatic adenocarcinoma growth and invasiveness.

نویسندگان

  • Nicholas J Gaspar
  • Lingyun Li
  • Ann M Kapoun
  • Satyanarayana Medicherla
  • Mamatha Reddy
  • Georgia Li
  • Gilbert O'Young
  • Diana Quon
  • Margaret Henson
  • Deborah L Damm
  • Gladys T Muiru
  • Alison Murphy
  • Linda S Higgins
  • Sarvajit Chakravarty
  • Darren H Wong
چکیده

Transforming growth factor beta (TGFbeta) is a pleiotropic factor that regulates cell proliferation, angiogenesis, metastasis, and immune suppression. Dysregulation of the TGFbeta pathway in tumor cells often leads to resistance to the antiproliferative effects of TGFbeta while supporting other cellular processes that promote tumor invasiveness and growth. In the present study, SD-208, a 2,4-disubstituted pteridine, ATP-competitive inhibitor of the TGFbeta receptor I kinase (TGFbetaRI), was used to inhibit cellular activities and tumor progression of PANC-1, a human pancreatic tumor line. SD-208 blocked TGFbeta-dependent Smad2 phosphorylation and expression of TGFbeta-inducible proteins in cell culture. cDNA microarray analysis and functional gene clustering identified groups of TGFbeta-regulated genes involved in metastasis, angiogenesis, cell proliferation, survival, and apoptosis. These gene responses were inhibited by SD-208. Using a Boyden chamber motility assay, we demonstrated that SD-208 inhibited TGFbeta-stimulated invasion in vitro. An orthotopic xenograft mouse model revealed that SD-208 reduced primary tumor growth and decreased the incidence of metastasis in vivo. Our findings suggest mechanisms through which TGFbeta signaling may promote tumor progression in pancreatic adenocarcinoma. Moreover, they suggest that inhibition of TGFbetaRI with a small-molecule inhibitor may be effective as a therapeutic approach to treat human pancreatic cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a Smad1-dependent mechanism that involves matrix metalloproteinase-2.

Bone morphogenetic proteins (BMPs) have an emerging role in human cancers. Here we demonstrate that the BMP-signaling pathway is intact and functional in human pancreatic cancer cells, with several BMP signaling components and transcriptional targets upregulated in human pancreatic cancer specimens compared with normal pancreatic tissue. Functionally, multiple BMP family members, including BMP-...

متن کامل

Microenvironmental factors and extracellular matrix degradation in pancreatic cancer.

Pancreatic cancer is a devastating malady with proclivity for early metastasis, accounting for its poor prognosis. Pancreatic ductal adenocarcinoma, the most common type of pancreatic malignancy, exhibits an over-expression of several growth factors such as epidermal growth factor and transforming growth factor beta, which correlate with a decrease in patient survival. These growth factors as w...

متن کامل

Induction of p21waf1 expression and growth inhibition by transforming growth factor beta involve the tumor suppressor gene DPC4 in human pancreatic adenocarcinoma cells.

The tumor suppressor gene deleted in pancreatic cancer locus 4 (DPC4) is inactivated in about 50% of pancreatic adenocarcinomas. DPC4 was found to be homologous to Smad4 and may function as a transcription factor in the transforming growth factor beta (TGF-beta) receptor-mediated signal transduction pathway. We have investigated the role of DPC4 in the TGF-beta receptor-mediated signal transduc...

متن کامل

Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling.

Transforming growth factor (TGF)-beta plays a pivotal role in regulation of progression of cancer through effects on tumor microenvironment as well as on cancer cells. TGF-beta inhibitors have recently been shown to prevent the growth and metastasis of certain cancers. However, there may be adverse effects caused by TGF-beta signaling inhibition, including the induction of cancers by the repres...

متن کامل

Inhibition of microRNA-21 decreases the invasiveness of fibroblast-like synoviocytes in rheumatoid arthritis via TGFβ/Smads signaling pathway

Objective(s): MicroRNA-21 (miR21) is aberrantly elevated in rheumatoid arthritis (RA) patients, the significance of this microRNA in RA pathogenesis and treatment, however, has not been investigated. In this study, by using RA-derived fibroblast-like synoviocyte (FLS) cells as a model, we investigated the effect and corresponding mechanism of miR21 inhibition on FLSs invasion. Materials and Met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 72 1  شماره 

صفحات  -

تاریخ انتشار 2007